28.2  Kans en verwachting >
Fancy fair

We kijken nogmaals naar de geluksspelletjes uit de Intro. We gaan beredeneren of de spelletjes eerlijk zijn of niet.

1

Ebbe speelt 300 keer het geluksspelletje doublette. Hij zet altijd in op hetzelfde nummer (zijn ‘geluksnummer’) in.

a

Wint of verliest Ebbe? Hoeveel naar verwachting?

Ines speelt ook 300 keer. Zij zet telkens de pion willekeurig neer op één van de zes sectoren.

b

Neem het rechthoeksschema over en kleur de hokjes die winst opleveren voor Ines.

c

Hoe groot is de kans op een uitkering voor Ines?

d

Voor wie is de kans op een uitkering groter: voor Ebbe of voor Ines?

e

Wat is voor de bank de verwachte opbrengst per 300 spelletjes?

Doublette is dus geen eerlijk geluksspelletje. Het spelletje levert namelijk gemiddeld voordeel op voor de bank.

2

Kijk nog eens naar de spelregels van étoile circulaire. Met behulp van een rechthoeksschema kun je uitzoeken hoe groot de kans is op 2 sterren, 1 ster en 0 sterren.

a

Neem het rechthoeksschema over en noteer daarin de mogelijke trekkingen van een blauwe en een oker gekleurde kaart.

b

Lees uit het rechthoeksschema wat de kans is op:

  • 2 sterren;

  • 1 ster;

  • 0 sterren.

Ad speelt 100 spelletjes étoile circulaire.

c

In hoeveel van die spelletjes verwacht je winst voor Ad? En hoe groot is de winst voor Ad?

d

In hoeveel van die spelletjes verwacht je verlies voor Ad? En hoe groot is het verlies?

e

In hoeveel spelletje wordt er quitte gespeeld?

f

Wie zou je liever zijn als je wilt winnen: de bank of Ad?

3

In de Intro heb je het geluksspelletje langstraat gespeeld. Je hebt daarvoor (minimaal) 60 keer met een dobbelsteen gegooid. Kijk nog eens naar jouw resultaten bij dit geluksspelletje.

a

Hoeveel ogen heb je gemiddeld per worp geworpen?

b

Komt dit overeen met het aantal ogen dat je had kunnen verwachten? Geef uitleg.

Langstraat is geen eerlijk geluksspelletje.

c

Hoeveel moeten de spelers inzetten om dit spelletje eerlijk te laten zijn?

4

Het spel muntjewerp wordt 800 maal gespeeld. De verwachte uitkomsten kunnen in het stroomdiagram worden genoteerd.

a

Neem het stroomdiagram over en vul het verder in.
Dat wil zeggen: schrijf de kansen bij de takken en schrijf de verwachte aantallen in de rechthoeken.

b

Wat is de kans op een uitkering van 3  euro? En op een uitkering van 5  euro?

c

Wat is voor de speler de verwachte uitbetaling per spel?

d

Is muntjewerp een eerlijk spel?

In de figuur zie je een muntjewerp-speelveld met andere uitbetalingen. De inzet blijft 1  euro.

e

Is dit spel eerlijk?

f

Bereken de verwachte uitbetaling per spel. Is het antwoord dat je in het vorige onderdeel hebt gegeven juist?

De verwachte uitbetaling per spel, ook wel verwachtingswaarde genoemd, is een theoretisch gemiddelde. Als je een spel heel vaak speelt, zal de gemiddelde uitbetaling per spel dicht bij dit theoretische gemiddelde liggen.
De verwachte uitbetaling per spel is dus niet het bedrag dat je verwacht als je het spel één keer speelt (hoewel de naam dat wel doet vermoeden).

Meer geluksspelletjes
5
8

Paul en Ilonka spelen een geluksspelletje met twee dobbelstenen.
Als er minstens één zes bovenkomt, wint Paul.
Ilonka moet 1  euro betalen als er één zes bovenkomt en ze moet 2 1 2  euro betalen als er twee zessen bovenkomen. Als er geen zes bovenkomst, wint Ilonka. We gaan onderzoeken hoeveel Paul aan Ilonka zou moeten betalen om het spelletje eerlijk te laten zijn.
Stel Paul en Ilonka spelen het geluksspelletje 36  keer. De verwachte uitkomsten kunnen in een stroomdiagram worden genoteerd. In het plaatje zie je een gedeelte van zo’n stroomdiagram.

a

Neem het diagram over en voltooi het.

b

Welk bedrag verwacht je dat Ilonka moet betalen als ze 36 keer spelen? Schrijf je berekening op.

Als Ilonka wint, betaalt Paul precies zoveel dat het spelletje eerlijk is.

c

Welk bedrag moet Paul betalen bij elk spelletje dat Ilonka wint?

6
9

In het plaatje is een rad van avontuur getekend. De kleur die door de pijl aangewezen wordt, heeft gewonnen.
Henk, Carla, Mark en Anke spelen met dit rad van avontuur. Zij hebben respectievelijk de kleuren rood, wit, blauw en oranje gekozen. Zij doen elk 75  cent in de pot. De persoon wiens kleur door de pijl aangewezen wordt, wint de pot.

a

Kan Henk in 12 spelletjes winst of verlies verwachten? Hoeveel?

b

Hoe groot is de verwachte uitbetaling per spel voor Henk?

c

Bereken de verwachte uitbetaling per spel voor Mark.

d

Bereken de verwachte uitbetaling per spel voor Anke.

Anke vindt het spel best leuk, maar ze vindt het minder aardig dat ze zoveel verliest. Ze stelt daarom voor de inzet te veranderen, zó dat het spel eerlijk wordt. Ze wil dat iedereen een verwachte winst van nul heeft.

e

Maak een voorstel voor zo’n verandering.

7

Aafke, Dolf, Leon en Ton doen een spel met drie dobbelstenen.

  • Aafke wint als bij geen van de stenen het aantal ogen even is.

  • Dolf wint als op één dobbelsteen het aantal ogen even is.

  • Leon wint als op twee dobbelstenen het aantal ogen even is.

  • Ton wint als op elk van de drie dobbelstenen het aantal ogen even is.

Voor elke worp wordt ingezet en de winnaar krijgt de pot.
We weten dat de inzet van Leon 15  cent is. De vier spelers willen dat het spel eerlijk is.

Hoeveel zetten de andere spelers in? Schrijf je berekening op.

(hint)

Maak eem stroomdiagram.

5s
8s

In deze opgave kijken we naar een eenvoudige uitvoering van een gokautomaat. Het apparaat heeft twee vensters waarachter twee trommels zitten. Deze trommels kunnen we onafhankelijk van elkaar laten draaien. Van tevoren moeten we dan wel 50  cent in de gleuf werpen. Op elke trommel staan 10 figuren waarvan er één door het venster te zien is. De trommels stoppen willekeurig bij één van deze 10 figuren. De automaat betaalt 1  euro uit, als beide trommels dezelfde figuur tonen.
Gerd beproeft op een avond zijn geluk. Na honderd keer spelen, wint hij precies 2  euro.

Is dit inderdaad geluk of mag Gerd enige winst verwachten? Geef uitleg.

6s
9s

Ines werpt met twee dobbelstenen, één gewone en één in de vorm van een regelmatig viervlak. Ze telt bij elke worp het aantal ogen op en schrijft hun som in het bijbehorende hokje in het rooster.

a

Neem het rooster over en vul het verder in.

b

Wat is de verwachtingswaarde van de som van het aantal ogen?

c

Wat is de verwachtingswaarde van het aantal ogen dat Ines met een gewone dobbelsteen werpt? En van de vierzijdige dobbelsteen?

d

Wat valt je op?

Verwachtingswaarde in praktijk
10

Verzekeringsmaatschappijen werken veel met kansen. Wintersportvakanties zijn niet zonder risico. Ongeveer 6 % van alle wintersporters raakt in meer of mindere mate gewond.
De behandelingskosten kunnen variëren van enkele tientjes tot duizenden euro’s. Gemiddeld liggen de kosten per gewonde rond de 4000  euro.
Per jaar gaan 100.000 Nederlanders naar de wintersport. Laten we aannemen dat ze zich allemaal bij één verzekeringsmaatschappij verzekeren en dat deze maatschappij geen winst hoeft te maken.

a

Hoe hoog zal de verzekeringspremie per persoon moeten bedragen, opdat de verzekeringsmaatschappij de verwachte kosten kan betalen?

Stel dat slechts de helft van de wintersporters zich verzekert.

b

Bereken ook nu de hoogte van de premie.

11

Bij een experiment doen proefpersonen een test. Zodra de test succesvol is, is de proefpersoon klaar.
Als de eerste test niet succesvol is, doet de proefpersoon een tweede test; als die tweede test ook niet succesvol is, doet de proefpersoon een derde test. Een proefpersoon doet hoogstens drie keer een test.
Iedere keer opnieuw dat een proefpersoon een test doet, is de kans op succes 0,3 .
Stel dat 1000 proefpersonen aan het experiment deelnemen.

a

Hoeveel testen verwacht je dat er in totaal worden afgenomen bij de 1000 proefpersonen?

(hint)

Maak een stroomdiagram.

b

Wat is het verwachte aantal testen per proefpersoon?

Voor het experiment is 10.000  euro beschikbaar.
Een proefpersoon krijgt 100  euro voor zijn deelname aan het experiment. De kosten per test bedragen 50  euro. We willen zo veel mogelijk proefpersonen laten meedoen aan het experiment.

c

Bereken hoeveel proefpersonen we naar verwachting aan het experiment kunnen laten deelnemen.