10.5  Rekenregels logaritmen >
1
a

2 log ( 3 ) 1,6 ; 2 log ( 5 ) 2,3 ; 2 log ( 15 ) 3,9

b

2 log ( 3 ) + 2 log ( 5 ) = 2 log ( 15 )

c

Zeker fout, want 2 log ( 8 ) = 3

d

Vermoeden: 3 log ( 4 ) + 3 log ( 10 ) = 3 log ( 40 ) ;
1,26 + 2,10 = 3,36 , dus lijkt te kloppen.

2
a

2 a = 3 , 2 b = 5 en 2 c = 15

b

3 5 = 15 , dus 2 a 2 b = 2 a + b = 2 c , dus a + b = c

c

-

3
a

3 uur; 1 uur; 3 + 1 = 4 uur

b

2 uur; 1 2 uur; 2 + 1 2 = 2 1 2 uur

c

In x + y uur

4
a
  1. 5 log ( 625 ) + 5 log ( 1 5 ) = 4 + 1 = 3

  2. 5 log ( 625 ) + 5 log ( 1 5 ) = 5 log ( 125 ) = 3

b

log ( 20 ) + log ( 5 ) 1,3 + 0,7 = 2
log ( 20 ) + log ( 5 ) = log ( 100 ) = 2 en
log ( 5 ) + log ( 1 2 ) 0,7 + 0,3 = 0,4
log ( 5 ) + log ( 1 2 ) = log ( 2,5 ) 0,4

5

= 3 log ( 9 ) = 2

= 5 log ( 1 5 ) = 1

= 1 4 log ( 4 ) = 1

= 30 log ( 30 ) = 1

= 2 log ( 1 4 ) = 2

= 2 log ( 1 ) = 0

6

= 4 log ( 64 ) = 3

= 5 log ( 5 ) = 1

= 0,7 log ( 1 0,7 ) = 1

= 7 log ( 84 x 12 x ) = 7 log ( 7 ) = 1

= 5 log ( 6 5 3 2 ) = 5 log ( 1 5 ) = 1

= 3 log ( 27 100 9 100 ) = 3 log ( 3 100 ) = 100

7
a

In beide gevallen vind je 1,5 respectievelijk 3,38039...

b

4 log ( 2 11 ) = 11 4 log ( 2 ) = 11 1 2 = 5 1 2

3 log ( ( 1 9 ) 11 ) = 11 3 log ( 1 9 ) = 11 2 = 22

1 4 log ( 2 11 ) = 11 1 4 log ( 2 ) = 11 1 2 = 5 1 2

1 3 log ( ( 1 9 ) 11 ) = 11 1 3 log ( 1 9 ) = 11 2 = 22

c

g log ( 1 x ) = g log ( x 1 ) = 1 g log ( x ) = g log ( x )

8
  1. a log ( b 2 ) = 2 a log ( b ) = 10

  2. a log ( b c ) = a log ( b ) + a log ( c ) = 5 + 3 = 8

  3. a log ( b c ) = a log ( b ) + a log ( c ) = 5 + 1 2 a log ( c ) = 5 + 1 1 2 = 6 1 2

  4. a log ( b 2 c 3 ) = 2 a log ( b ) + 3 a log ( c ) = 2 5 + 3 3 = 19

  5. a log ( b c ) = a log ( b ) a log ( c ) = 5 3 = 2

  6. a log ( 1 c ) = a log ( 1 ) a log ( c ) = 0 3 = 3

  7. a log ( 1 b 3 ) = a log ( 1 ) a log ( b 3 ) = 0 3 a log ( b ) = 0 3 5 = 15

  8. a log ( b c ) = 1 2 ( a log ( b ) + a log ( c ) ) = 1 2 ( 5 + 3 ) = 4

9
a

log ( a b ) + log ( b c ) + log ( c a ) = log ( a b b c c a ) = log ( ( a b c ) 2 ) = 2 log ( a b c )

b

log ( a b ) + log ( b c ) + log ( c a ) = log ( a b c a b c ) = log ( 1 ) = 0

10
a
  • 2 log ( x ) = 3 x = 2 3 x = 8

  • 3 log ( x + 1 ) = 3 x + 1 = 3 3 = 27 x = 26

  • 4 log ( 2 x ) = 3 2 x = 4 3 = 1 64 x = 1 128

  • 5 log ( 2 x + 1 ) = 3 2 x + 1 = 5 3 = 125 x = 62

  • 3 log ( x ) = 2 x = 3 2 = 9 x = 81

  • 2 log ( x 2 1 ) = 3 x 2 1 = 2 3 = 8 x 2 = 9 x = 3 of x = 3

  • 5 log ( 1 x ) = 2 1 x = 5 2 = 1 25 x = 25

  • 2 log ( x 2 2 x ) = 3 x 2 2 x = 2 3 = 8 x 2 2 x 8 = 0 ( x 4 ) ( x + 2 ) = 0 x = 4 of x = 2

b
  • log ( x ) = 3 log ( 6 ) log ( x ) = log ( 6 3 ) = log ( 216 ) x = 216

  • 3 log ( x ) = log ( 6 ) log ( x 3 ) = log ( 6 ) x 3 = 6 x = 6 3

  • 2 log ( 1 x ) = 3 log ( 4 ) log ( ( 1 x ) 2 ) = log ( 4 3 ) 1 x 2 = 64 x 2 = 1 64 x = 1 8 (vervalt!) of x = 1 8 , dus x = 1 8

  • log ( 6 ) + log ( 1 x ) = log ( x ) log ( 6 x ) = log ( x ) 6 x = x x 2 = 6 x = 6 (vervalt!), of x = 6 , dus x = 6

c
  • 2 log ( 8 x ) = 2 log ( 12 ) 8 x = 12 x = 1 1 2

  • 2 log ( 95 x ) = 2 log ( 5 ) 95 x = 5 x = 19

  • 5 log ( x 2 ) = 5 log ( 7 ) x 2 = 7 x = 14

  • log ( 40 x ) = 4 40 x = 10 4 = 10000 x = 250

  • log ( x 5 ) = log ( 10 ) + log ( 7 ) = log ( 70 ) x 5 = 70 x = 350

  • 2 log ( x 3 ) = 2 log ( 12 x ) x 3 = 12 x x 2 = 36 x = 6 (vervalt!) of x = 6 , dus x = 6