20.3  Het platte vlak >
Punten en coördinaten

Net als bij het systeem van lengte- en breedtecirkels, gebeurt plaatsbepaling in de wiskunde met behulp van de snijpunten van lijnen. We werken echter niet met noorderbreedte, zuiderbreedte, oosterlengte en westerlengte. In de wiskunde gebruiken we een rooster waarin de lijnen met positieve en negatieve getallen zijn gecodeerd, een zogenaamd assenstelsel.

In het plaatje zie je een assenstelsel. Het bestaat uit een horizontale en een verticale as die loodrecht op elkaar staan. Deze assen worden coördinaatassen genoemd. Het snijpunt van de twee de coördinaatassen noemen we de oorsprong O .

De plaats van roosterpunten in het assenstelsel kunnen we met twee getallen aangeven. We noemen deze getallen coördinaten.

Met de eerste coördinaat geven we aan hoever het punt ligt van de verticale as:

  • naar rechts rekenen we positief;

  • naar links negatief.

Met de tweede coördinaat geven we aan hoever het punt van de horizontale as af ligt:

  • naar boven rekenen we positief;

  • naar beneden negatief.

We schrijven een coördinatenpaar tussen haakjes. De oorsprong O krijgt zo de coördinaten ( 0,0 ) . In het assenstelsel zijn met een stip de roosterpunten A ( 5,2 ) en B ( 3, 4 ) aangegeven.

Punt A ( 5,2 ) ligt:

  • 5 eenheden rechts van de verticale as;

  • 2 eenheden boven de horizontale as.

Punt B ( 3, 4 ) ligt:

  • 3 eenheden links van de verticale as;

  • 4 eenheden onder de horizontale as.

1
a

Noteer de coördinaten van de roosterpunten die met een stip zijn aangegeven in het assenstelsel.

b

Neem het assenstelsel over op ruitjespapier en teken daarin de punten met de volgende coördinaten; zet de bijbehorende letter erbij:
H ( 2, 5 ) , I ( 7,7 ) , J ( 6,4 ) en K ( 6,0 ) .








Ook aan punten die geen roosterpunten zijn, kunnen we coördinaten toekennen. Minstens een van de coördinaten is dan geen geheel getal meer.

In het assenstelsel is A het punt ( 1 1 2 ,3 1 2 ) .

c

Neem het assenstelsel over en geef de volgende punten zo nauwkeurig mogelijk aan; zet de bijbehorende letter erbij:
B ( 2 1 2 , 4 ) , C ( 4 1 2 , 1 2 ) en D ( 1 3 4 ,6 1 4 )

d

Kleur in het assenstelsel het gebied waar de punten liggen waarvan de eerste coördinaat ligt tussen 5 en 4 en de tweede coördinaat ligt tussen 2 en 3.


Het is moeilijk om in het assenstelsel van opgave 6c punten met niet-gehele coördinaten heel nauwkeurig aan te geven. Hiernaast zie je het stuk van het assensstelsel dat je in opgave 6d gekleurd hebt, vergroot afgebeeld.

e

Neem dit vergrote deel van het assenstelsel over op ruitjespapier en geef daarin de precieze plaats van de volgende punten aan; schrijf de letters erbij:
A ( 4 3 8 ,2 1 2 ) , B ( 4 3 4 ,2 7 8 ) en C ( 4 1 8 ,2 1 8 ) .

2
3
a

Teken op ruitjespapier een assenstelsel. Laat de horizontale en de verticale as van 5 tot en met 5 lopen.

b

Kleur het gebied waarin de punten liggen waarvan de eerste coördinaat ligt tussen 1 en 3 en de tweede coördinaat tussen 4 en 2.

c

Geef de coördinaten van de vier hoekpunten van dit gebied.

d

Geef de coördinaten van het middelpunt van dit gebied.

2s
3s
a

Teken op ruitjespapier een assenstelsel. Laat de horizontale en de verticale as van 7 tot en met 7 lopen.

b

Kleur het gebied waarin de punten liggen waarvan de eerste coördinaat ligt tussen 1 en 3 en de tweede coördinaat tussen 3 en 2.

De vier hoekpunten van het gebied noemen we A , B , C en D .

c

Geef de coördinaten van A , B , C en D .

We vermenigvuldigen rechthoek A B C D met factor 2 ten opzicht van de oorsprong.

d

Geef de coördinaten van de beeldfiguur.

We vermenigvuldigen rechthoek A B C D met factor x ten opzichte van de oorsprong.

e

Geef de coördinaten van de beeldfiguur.

4

Een deel van het assenstelsel in het plaatje is gekleurd.

Wat kun je zeggen over de eerste coördinaat van de punten die liggen in het gekleurde gebied?
En wat kun je zeggen over de tweede coördinaat?

Coördinaten van punten berekenen
5

De rechthoek in het plaatje heeft hoekpunten ( 2,2 ) , ( 2, 3 ) , ( 5, 3 ) en ( 5,2 ) .
A , B , C en D zijn de middens van de zijden van de rechthoek. Ook is een diagonaal van de rechthoek getekend. Het midden van de diagonaal noemen we M .

a

Neem het assenstelsel met de rechthoek over en teken vierhoek A B C D .

b

Wat voor soort vierhoek is A B C D ?

Ines wil de coördinaten van punt A weten. Ze redeneert als volgt:
"Als ik 7 stappen naar rechts ga vanuit het punt ( 2,2 ) , kom ik in het punt ( 5,2 ) . Het punt A krijg ik dus door 3 1 2 stap naar rechts te gaan vanuit het punt ( 2,2 ) . Dus punt A heeft coördinaten ( 1 1 2 ,2 ) ."

De redenering van Ines komt op hetzelfde neer als het gemiddelde nemen van de getallen 2 en 5. Het berekenen van een gemiddelde ben je in hoofdstuk 9 - Getallenlijn al tegengekomen.

c

Bereken op dezelfde manier als Ines de coördinaten van B , C en D .

d

Geef de coördinaten van M .

6

Het lijnstuk tussen de punten A ( 4,1 ) en B ( 3, 5 ) wordt door de punten C en D in drie even grote stukken verdeeld. Hans wil de coördinaten van punt C weten.

Hans redeneert als volgt:

Vanuit punt A ( 4,1 ) kom ik in punt B ( 3, 5 ) door 7 stappen naar rechts en 6 stappen naar beneden te gaan.

Punt C krijg ik dus door 1 3 · 7 = 2 1 3 stap naar rechts en 1 3 · 6 = 2 vanuit het punt A ( 4,1 ) stappen naar beneden te gaan.

Dus punt C heeft eerste coördinaat 4 + 2 1 3 = 1 2 3 en tweede coördinaat 1 2 = 1 dus C is: ( 1 2 3 , 1 ) .

Bereken op dezelfde manier als Hans de coördinaten van punt D .

7
9
a

Teken op ruitjespapier een assenstelsel. Neem de assen van 7 tot en met 7.

b

Teken in dit assenstelsel de vierhoek met hoekpunten A ( 0,3 ) , B ( 5,0 ) , C ( 0, 7 ) en D ( 5,0 ) .

Het midden van zijde A B noemen we P .
Het midden van zijde B C noemen we Q .
Het midden van zijde C D noemen we R .
Het midden van zijde D A noemen we S .

c

Teken de punten P , Q , R en S .

d

Teken vierhoek P Q R S .

e

Wat voor soort vierhoek is A B C D ? En wat voor soort vierhoek is P Q R S ?

f

Bereken de coördinaten van P , Q , R en S .

8

Getekend staat een driehoek met hoekpunten ( 2,2 ) , ( 1, 4 ) en ( 7,4 ) .

De punten A , B , C , D , E en F verdelen de zijden in drie even grote stukken.

Bereken de coördinaten van A , B , C , D , E en F .

7s
9s

Je ziet een assenstelsel met daarin een rechthoek. Bij twee van de hoekpunten zijn de coördinaten gegeven.

a

Geef de coördinaten van de andere twee hoekpunten. (Uitdrukken in a , b , c en d .)

E , F , G en H zijn de middens van de zijden van de rechthoek.

b

Geef de coördinaten van E , F , G en H .

M is het snijpunt van de diagonalen van de rechthoek.

c

Geef de coördinaten van M .

10
a

Teken op ruitjespapier een assenstelsel. Neem de assen van 7 tot en met 7.

b

Teken in dit assenstelsel de vierhoek met hoekpunten ( 1, 2 ) , ( 3, 1 2 ) , ( 1,2 1 2 ) en ( 3,1 ) .

c

Wat voor soort vierhoek is dit?

We vermenigvuldigen van elk hoekpunt de eerste coördinaat met 1 1 2 en de tweede coördinaat met 2.

d

Schrijf de coördinaten op van de hoekpunten die je zo krijgt.

e

Teken de vierhoek met deze vier punten als hoekpunten.

René Descartes (1596 - 1650)

Het idee dat je een meetkundig punt in het platte vlak voor kunt stellen als een getallenpaar ( a , b ) is afkomstig van René Descartes. Deze Franse filosoof en wiskundige publiceerde zijn ontdekking in 1637 in een bijlage, La Géométrie, bij zijn belangrijkste filosofische werk: Discours de la méthode.

Het verhaal gaat dat Descartes zijn wiskundig idee te danken heeft aan een vlieg op het plafond van zijn slaapkamer. Descartes zag de vlieg en vroeg zich af hoe hij de baan, die de vlieg aflegde, kon beschrijven zonder deze te tekenen. Descartes kreeg een geniale ingeving. "De positie van de vlieg kan ik beschrijven door de afstand te bepalen van de vlieg tot twee haaks op elkaar staande muren." Het idee van coördinaten is geboren.